Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-33056
J Gen Physiol 1974 Feb 01;632:235-56.
Show Gene links Show Anatomy links

Double sucrose-gap method applied to single muscle fiber of Xenopus laevis.

Nakajima S , Bastian J .


???displayArticle.abstract???
Passive electrical properties (internal conductance, membrane conductance, low frequency capacity, and high frequency capacity obtained from the foot of the action potential) of normal and glycerol-treated muscle of Xenopus were determined with the intracellular microelectrode technique. The results show that the electrical properties of Xenopus muscle are essentially the same as those of frog muscle. Characteristics of the action potential of Xenopus muscle were also similar to those of frog muscle. Twitch tension of glycerol-treated muscle fibers of Xenopus recovered partially when left in normal Ringer for a long time (more than 6 h). Along with the twitch recovery, the membrane capacity increased. Single isolated muscle fibers of Xenopus were subjected to the double sucrose-gap technique. Action potentials under the sucrose gap were not very different from those obtained with the intracellular electrode, except for the sucrose-gap hyperpolarization and a slight tendency toward prolongation of the shape of action potential. Twitch contraction of the artificial node was recorded as a change of force from one end of the fiber under the sucrose gap. From the time-course of the recorded force and the sinusoidal stress-strain relationship at varying frequencies of the resting muscle fiber, the time-course of isotonic shortening of the node was recovered by using Fourier analysis. It was revealed that the recorded twitch force can approximately be regarded as isotonic shortening of the node.

???displayArticle.pubmedLink??? 4812637
???displayArticle.pmcLink??? PMC2203549




References [+] :
Adrian, Voltage clamp experiments in striated muscle fibres. 1970, Pubmed