Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-32415
J Biol Chem 1976 Oct 10;25119:6097-107.
Show Gene links Show Anatomy links

Synthesis of the mitochondrial inner membrane in cultured Xenopus laevis oocytes.

Koch G .


???displayArticle.abstract???
The purpose of this study was to investigate the contribution of mitochondrial and cytoplasmic protein synthesis to the biogenesis of cytochrome oxidase (ferrocytochrome c:oxygen oxidoreductase EC 1.9.3.1) and rutamycin-sensitive adenosine triphosphatase (ATP phosphohydrolase EC 3.6.1.3) in cultured oocytes of the toad, Xenopus laevis. X. laevis cytochrome oxidase was purified over 23-fold with respect to specific activity and over 29-fold with respect to specific heme a content from oocyte submitochondrial particles. Polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate separated the enzyme into six subunits with molecular weights of 44,000, 33,000, 23,000, 17,000, 12,000 and 9,500. the synthesis of the three larger subunits is sensitive to chloramphenicol (an inhibitor of mitochondrial protein synthesis), indicating that these subunits are made on mitochondrial ribosomes; the synthesis of the three smaller subunits is sensitive to cycloheximide (an inhibitor of cytoplasmic protein synthesis) and therefore occurs on cytoplasmic ribosomes. X. laevis rutamycin-sensitive ATPase, purified over 19-fold from oocyte submitochondrial pparticles, consists of 10 subunits with molecular weights of 56,000, 53,000, 41,000, 32,000, 29,000, 24,000, 21,000, 17,500 (2), and 11,500 on sodium dodecyl sulfate-polyacrylamide gels. The 29,000, 21,000, and one of the 17,500-dalton polypeptides are synthesized in the presence of cycloheximide and are, therefore, products of mitochondrial protein synthesis; the synthesis of the remaining seven subunits occurs in the presence of chloramphenicol, indicating that these subunits are made on cytoplasmic ribosomes. The synthesis of protein by mitochondria in cultured oocytes appears to be dependent upon cytoplasmic protein synthesis. In the presence of cycloheximide, the mitoribosomal synthesis of the subunits of cytochrome oxidase and rutamycin-sensitive ATPase is detectable only after a prior inhibition of mitochondrial protein synthesis by chloramphenicol. Oocyte mitochondrial ribosomes synthesize at least nine polypeptides after chloramphenicol treatment, three of which are components of neither cytochrome oxidase nor rutamycin-sensitive ATPase.

???displayArticle.pubmedLink??? 184093
???displayArticle.link??? J Biol Chem