Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-29896
Dev Biol 1984 Jan 01;1011:201-11.
Show Gene links Show Anatomy links

Lateral mobility of plasma membrane lipids in Xenopus eggs: regional differences related to animal/vegetal polarity become extreme upon fertilization.

Dictus WJ , van Zoelen EJ , Tetteroo PA , Tertoolen LG , de Laat SW , Bluemink JG .


???displayArticle.abstract???
Regional differences in the lateral mobility properties of plasma membrane lipids have been studied in unfertilized and fertilized Xenopus eggs by fluorescence photobleaching recovery (FPR) measurements. Out of a variety of commonly used lipid probes only the aminofluorescein-labeled fatty acids HEDAF (5-(N-hexadecanoyl)-aminofluorescein) and TEDAF (5-(N-tetradecanoyl)-aminofluorescein) appear to partition into the plasma membrane. Under all experimental conditions used these molecules show partial recovery upon photobleaching indicating the existence of lipidic microdomains. In the unfertilized egg the mobile fraction of plasma membrane lipids (approximately 50%) has a fivefold smaller lateral diffusion coefficient (D = 1.5 X 10(-8) cm2/sec) in the animal than in the vegetal plasma membrane (D = 7.6 X 10(-8) cm2/sec). This demonstrates the presence of an animal/vegetal polarity within the Xenopus egg plasma membrane. Upon fertilization this polarity is strongly (greater than 100X) enhanced leading to the formation of two distinct macrodomains within the plasma membrane. At the animal side of the egg lipids are completely immobilized on the time scale of FPR measurements (D less than 10(-10) cm2/sec), whereas at the vegetal side D is only slightly reduced (D = 4.4 X 10(-8) cm2/sec). The immobilization of animal plasma membrane lipids, which could play a role in the polyspermy block, probably arises by the fusion of cortical granules which are more numerous here. The transition between the animal and the vegetal domain is sharp and coincides with the boundary between the presumptive ecto- and endoderm. The role of regional differences in the plasma membrane is discussed in relation to cell diversification in early development.

???displayArticle.pubmedLink??? 6537927
???displayArticle.link??? Dev Biol