Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-28807
Adv Space Res 1986 Jan 01;612:21-8.
Show Gene links Show Anatomy links

Amphibian egg cytoplasm response to altered g-forces and gravity orientation.

Neff AW , Smith RC , Malacinski GM .


???displayArticle.abstract???
Elucidation of dorsal/ventral polarity and primary embryonic axis development in amphibian embryos requires an understanding of cytoplasmic rearrangements in fertile eggs at the biophysical, physiological, and biochemical levels. Evidence is presented that amphibian egg cytoplasmic components are compartmentalized. The effects of altered orientation to the gravitational vector (i.e., egg inversion) and alterations in gravity force ranging from hypergravity (centrifugation) to simulated microgravity (i.e., horizontal clinostat rotation) on cytoplasmic compartment rearrangements are reviewed. The behavior of yolk compartments as well as a newly defined (with monoclonal antibody) non-yolk cytoplasmic compartment, in inverted eggs and in eggs rotated on horizontal clinostats at their buoyant density, is discussed.

???displayArticle.pubmedLink??? 11537823