Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-28595
J Biol Chem 1986 Jul 25;26121:9979-89.
Show Gene links Show Anatomy links

Biosynthesis, processing, and secretion of M and Z variant human alpha 1-antitrypsin.

Verbanac KM , Heath EC .


???displayArticle.abstract???
The Z genetic variant of human alpha 1-antitrypsin (alpha 1AT) is associated with decreased serum alpha 1AT levels, hepatic inclusion bodies, and an increased risk of lung and liver disease. We studied the biosynthesis, processing, and secretion of normal and Z variant alpha 1AT in cell-free translation systems, reconstituted in vitro processing systems, and in the Xenopus oocyte secretory system. Human liver mRNA was prepared from normal subjects (PiMM) and from individuals homozygous for alpha 1AT deficiency (PiZZ). Cell-free translation resulted in the synthesis of 49,000-Da preproteins with a 23-amino acid signal sequence. The genetic variants were synthesized at comparable levels and could be distinguished on the basis of charge. The majority of the amino acids in the ZZ signal peptide were identified and found to be the same as those comprising the MM signal sequence. These proteins were co-translationally processed with similar efficiency by dog pancreas microsomes, producing 52,000-Da glycoproteins which were completely translocated across the endoplasmic reticulum membrane. When the human liver RNA preparations were injected into Xenopus oocytes, both of the alpha 1AT variants were synthesized intracellularly and alpha 1AT was detected in the medium of all oocytes injected with MM RNA. However, the Z variant accumulated within the microsomal vesicles of the cell and was undetectable or present at decreased levels in the medium. We conclude that the single amino acid substitution in the Z variant of alpha 1AT does not affect its synthesis or co-translational processing but that it strongly affects its transport from the rough endoplasmic reticulum through the secretory pathway.

???displayArticle.pubmedLink??? 3015914
???displayArticle.link??? J Biol Chem
???displayArticle.grants??? [+]