Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-28142
Development 1987 May 01;1001:31-41.
Show Gene links Show Anatomy links

Spinal neurite reabsorption and regrowth in vitro depend on the polarity of an applied electric field.

McCaig CD .


???displayArticle.abstract???
Retraction and regrowth of frog neural tube neurites have been studied in vitro in control cultures and in the presence of a small, continuously applied electrical field. In control cultures, some degree of retraction was seen in 39% of neurites while 7% were reabsorbed completely. Reabsorption of anodal-facing neurites was at least twice as common, with 67% showing some retraction and 17% almost totally reabsorbed. Cathodal-facing neurites were spared from retraction. Following extreme reabsorption of anodal-facing neurites, reversal of the electric field promoted regeneration in 47% (9/19) of cases studied. growth cone morphology also was determined by the polarity of the applied field. Anodal-facing growth cones had fewer filopodia than cathodal-facing growth cones sharing the same cell body. Field reversal induced a polarity-specific change in filopodia number on individual growth cones: a shift from anodal to cathodal increased filopodia numbers and vice versa. Some possible mechanisms involved and the significance of these results are discussed.

???displayArticle.pubmedLink??? 3652966