Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-27383
Biochem Int 1988 Aug 01;172:319-27.
Show Gene links Show Anatomy links

Polylysine and polyamine stimulation of the phosphatidylinositol kinases of amphibian oocyte membranes.

Carrasco D , Jacob G , Allende CC , Allende JE .


???displayArticle.abstract???
Phosphatidylinositol kinase present in Xenopus laevis oocyte membranes catalyzes the formation of phosphatidylinositol 4-phosphate using phosphatidylinositol and ATP as substrates while the activity of a second enzyme, phosphatidylinositol-4-phosphate kinase, results in the synthesis of phosphatidylinositol 4,5-bisphosphate. Large (Mr greater than 20,000) homopolymers of L-lysine or L-ornithine can stimulate the activity of both of these enzymes by at least 2-fold at 10-20 microM concentrations. Under similar conditions poly-L-arginine fails to stimulate the reaction causing a partial inhibition. Smaller polylysine (25 lysines) or lysine-rich oligopeptides such as one corresponding to the last 14 amino acids of the carboxyl end of c-Ki-ras 2 protein produce appreciable stimulation of phosphatidylinositol but at concentrations of 300-500 microM. Spermine and spermidine at millimolar concentrations also stimulate exogenous phosphatidylinositol phosphorylation. The amino-glycoside antibiotic neomycin has a biphasic effect, stimulating the phosphatidylinositol kinase at concentrations below 0.5 mM and strongly inhibiting at higher concentrations. Polylysine also moderately stimulates the loss of radioactivity of phosphatidylinositol-4-[32P] phosphate observed in oocyte membranes. Polylysine and polyornithine do not change the apparent Km for ATP of the phosphatidylinositol kinase but increase the Vmax of the reaction.

???displayArticle.pubmedLink??? 2847738