Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-26971
J Biol Chem 1989 Jan 05;2641:151-6.
Show Gene links Show Anatomy links

Purification and characterization of a novel protein phosphatase highly specific for ribosomal protein S6.

Andres JL , Maller JL .


???displayArticle.abstract???
Ribosomal protein S6 is the principal phosphoprotein of the eucaryotic ribosome that becomes multiply phosphorylated on serine residues in response to a wide variety of mitogenic stimuli. In this paper the principal protein phosphatases able to dephosphorylate S6 were characterized in Xenopus laevis ovary and eggs. Two enzymes termed peak I and peak II were found to account for most S6 phosphatase activity in both oocytes and eggs. The peak I enzyme had an apparent Mr of 200,000 on gel filtration, dephosphorylated the beta subunit of phosphorylase kinase and phosphorylase a, and was inhibited by inhibitor 1 and inhibitor 2, suggesting it was similar to protein phosphatase 1. The peak II enzyme was purified over 12,000-fold and had an apparent Mr = 55,000 on glycerol gradient centrifugation. This phosphatase could dephosphorylate all sites in S6 but was unable to dephosphorylate phosphorylase a or phosphorylase kinase. However, it was inhibited by nanomolar concentrations of inhibitor 1 and inhibitor 2. These results indicate the peak II enzyme represents a new class of highly specific protein phosphatase and suggest that inhibition of dephosphorylation in cellular extracts by inhibitor 1 and inhibitor 2 is not a sufficient criterion for implicating protein phosphatase 1 in a cellular process.

???displayArticle.pubmedLink??? 2535837
???displayArticle.link??? J Biol Chem
???displayArticle.grants??? [+]

Species referenced: Xenopus laevis