Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-26059
J Biol Chem 1990 Feb 25;2656:3263-9.
Show Gene links Show Anatomy links

Microinjected oligonucleotides complementary to the alpha-sarcin loop of 28 S RNA abolish protein synthesis in Xenopus oocytes.

Saxena SK , Ackerman EJ .


???displayArticle.abstract???
The integrity of the alpha-sarcin loop in 28 S ribosomal RNA is critical during protein synthesis. The toxins alpha-sarcin, ricin, Shiga toxin, and Shiga-like toxin inhibit protein synthesis in oocytes by attacking specific nucleotides within this loop (Ackerman, E.J., Saxena, S. K., and Ulbrich, N. (1988) J. Biol. Chem. 263, 17076-17083; Saxena, S.K., O'Brien, A.D., and Ackerman, E.J. (1989) J. Biol. Chem. 264, 596-601). We injected Xenopus oocytes with deoxyoligonucleotides complementary to the 17-nucleotide alpha-sarcin loop of Xenopus 28 S rRNA. Only injected oligonucleotides fully covering the alpha-sarcin loop or slightly beyond inhibited oocyte protein synthesis. Shorter alpha-sarcin domain deoxyoligonucleotides complementary to the alpha-sarcin and ricin sites but not spanning the entire loop were less effective inhibitors of protein synthesis. The alpha-sarcin domain oligonucleotides covering the entire loop were more effective inhibitors of protein synthesis than injected cycloheximide at equivalent concentrations. Control oligonucleotides complementary to nine other regions of Xenopus 28 S rRNA as well as universal M13 DNA sequencing primers had no effect on oocyte protein synthesis. Oligonucleotides complementary to the highly conserved alpha-sarcin domain therefore represent an alternative to catalytic toxins for causing cell death and may prove effective in immunotherapy.

???displayArticle.pubmedLink??? 2303449
???displayArticle.link??? J Biol Chem