Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-25888
J Biol Chem 1990 May 05;26513:7142-4.
Show Gene links Show Anatomy links

Expression of rat liver canalicular sulfate carrier in Xenopus laevis oocytes.

Palacín M , Werner A , Biber J , Murer H .


???displayArticle.abstract???
Poly(A)+ RNA (mRNA)extracted from rat liver was injected into Xenopus laevis oocytes and the expression of sulfate transport was determined by measuring [35S] sulfate uptake. Compared to water-injected oocytes, which exhibited virtually no sulfate uptake, injection of rat liver mRNA resulted in a time- and dose-dependent increase in uptake of sulfate. Depending on the method used for the isolation of the mRNA, sulfate uptake was stimulated after injection (40 ng after 6 days) between 8- and 72-fold compared to water-injected oocytes. Sulfate uptake of oocytes injected with mRNA was found to be sensitive to 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (IC50 less than 20 microM) and could also be inhibited by thiosulfate. Sulfate uptake of injected oocytes showed Michaelis-Menten kinetics (apparent Km, 0.31 mM) which is similar to the Km of the sulfate/bicarbonate antiporter of rat liver canalicular plasma membranes. After fractionation by a sucrose density gradient, the mRNA encoding for the expressed rat liver sulfate carrier was found in fractions containing messages of 3.5-4.0 kilobases in length.

???displayArticle.pubmedLink??? 1970568
???displayArticle.link??? J Biol Chem