Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-2494
Oncogene 2005 Jan 10;242:299-305. doi: 10.1038/sj.onc.1208278.
Show Gene links Show Anatomy links

The Plk3-Cdc25 circuit.

Myer DL , Bahassi el M , Stambrook PJ .


???displayArticle.abstract???
Polo-like kinases (Plks) are key regulators of the cell cycle, especially in the G2 phase and mitosis. They are incorporated into signaling networks that regulate many aspects of the cell cycle, including but not limited to centrosome maturation and separation, mitotic entry, chromosome segregation, mitotic exit, and cytokinesis. The Plks have well conserved 30-amino-acid elements, designated polo boxes (PBs), located in their carboxyl-termini, which with their flanking regions constitute a functional Polo-box domain (PBD). Members of the Plk family exist in a variety of organisms including Polo in Drosophila melanogaster; Cdc5 in Saccharomyces cerevisiae; Plo1 in Schizosaccharomyces pombe; Plx1 in Xenopus laevis; and Plk1, Snk/Plk2, Fnk/Prk/Plk3, and Sak in mammals. Polo, Cdc5, and Plo1 are essential for viability. The Plks can be separated into two groups according to their functions. The first group (Polo, Cdc5, plo1, Plx1, and Plk1) primarily performs mitotic functions, whereas the second group (Plk2 and Plk3) appears to have additional functions during the G1, S, and G2 phases of the cell cycle. Several contributions to this issue will discuss different aspects of Plk involvement in cell-cycle regulation. This review, therefore, will focus on the role of Plk3 in regulating Cdc25 phosphatase function and its effect on the cell cycle.

???displayArticle.pubmedLink??? 15640846
???displayArticle.link??? Oncogene
???displayArticle.grants??? [+]

Species referenced: Xenopus laevis
Genes referenced: plk1 plk3 rasgrf1