Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-24867
Dev Biol 1991 May 01;1451:174-81. doi: 10.1016/0012-1606(91)90223-p.
Show Gene links Show Anatomy links

Modulation of Na,K-ATPase expression during early development of Xenopus laevis.

Han Y , Pralong-Zamofing D , Ackermann U , Geering K .


???displayArticle.abstract???
In amphibian and mammalian systems, regulation of Na+ transport via the Na,K-ATPase plays an important role in distinct developmental processes such as blastocoele formation and neurulation. In this study, we have followed the Na,K-ATPase activity, the biosynthesis, and the cellular accumulation of catalytic alpha-subunits after fertilization of Xenopus laevis eggs up to neurula formation. Our data show that Na,K-ATPase activity increases significantly between stages 4 and 6 and again between stages 13 and 24. The four-fold rise in Na,K-ATPase activity during blastocoele formation is not mediated by an increased cellular pool of alpha-subunits. On the other hand, a five-fold increase of the biosynthesis rate around midblastula precedes a progressive accumulation up to neurula stage mainly of alpha 1-subunits and to a lesser extent of a second alpha-immunoreactive species. In contrast, newly synthesized glycoproteinic beta 1-subunits of Na,K-ATPase cannot be detected up to late neurula. These data indicate that (1) upregulation of Na,K-ATPase activity during blastocoele and neurula formation are mediated by different regulation mechanisms and (2) alpha- and possibly beta-isoforms are expressed in a developmentally regulated fashion during early Xenopus development.

???displayArticle.pubmedLink??? 1850368
???displayArticle.link??? Dev Biol


Species referenced: Xenopus laevis
Genes referenced: atp1a1