Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-24843
J Steroid Biochem Mol Biol 1991 May 01;385:657-62. doi: 10.1016/0960-0760(91)90324-x.
Show Gene links Show Anatomy links

Identification of aldosterone metabolites formed by A6 cells.

Matsuzaki K , Kimura K , Kurokawa K , Miyazaki T .


???displayArticle.abstract???
The A6 cell line of the toad kidney is well known to form an Na+ transporting tight epithelium in culture and is often used as an experimental model for Na+ transport systems. Although it has been shown that A6 cells can convert aldosterone to polar metabolites, these metabolites have not been identified. Therefore, in this study, we tried to identify the metabolites of aldosterone formed by A6 cells in culture. A6 cells at confluence were incubated with serum-free culture media containing [3H]aldosterone. When radioactive compounds in incubation media were separated by reversed phase high-pressure liquid chromatography (HPLC), four fractions (fractions A-D) were obtained. Fraction A, a mixture of two components, comprised the majority of metabolites formed. The more polar material (fraction A-1) and the less polar material (fraction A-2) of fraction A contained 47-71 and 9-19% of total radioactivity, respectively. When incubated in cell-free media, fraction A-2 was found to be unstable and partially converted to fraction A-1. Fraction B, 0.7-1.5% of total radioactivity, and fraction C, 8-21% of total radioactivity, cochromatographed with iso-aldosterone and D-aldosterone, respectively. Fraction D, 4-8% of total radioactivity, was a mixture of two components, which cochromatographed with 3 beta,5 beta-tetrahydroaldosterone and 5 alpha-dihydroaldosterone, respectively. In order to identify fraction A-2 material, large-scale cultures were performed and fraction A-2 was separated and purified by reversed phase HPLC. The purified material was analyzed by fast atom bombardment mass spectrometry and nuclear magnetic resonance spectroscopy. These two procedures unambiguously revealed that this material was 6 beta-hydroxyaldosterone. These results demonstrate that aldosterone can be converted to at least four metabolites by the incubation with A6 cells, and that major metabolites are polar compounds, a portion of which is 6 beta-hydroxyaldosterone.

???displayArticle.pubmedLink??? 2039757
???displayArticle.link??? J Steroid Biochem Mol Biol