Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-24728
Mol Cell Biol 1991 Jul 01;117:3407-18. doi: 10.1128/mcb.11.7.3407-3418.1991.
Show Gene links Show Anatomy links

A possible role for a mammalian facilitative hexose transporter in the development of resistance to drugs.

Vera JC , Castillo GR , Rosen OM .


???displayArticle.abstract???
We show that D- but not L-hexoses modulate the accumulation of radioactive vinblastine in injected Xenopus laevis oocytes expressing the murine Mdr1b P-glycoprotein. We also show that X. laevis oocytes injected with RNA encoding the rat erythroid/brain glucose transport protein (GLUT1) and expressing the corresponding functional transporter exhibit a lower accumulation of [3H]vinblastine and show a greater capacity to extrude the drug than do control oocytes not expressing the rat GLUT1 protein. Cytochalasin B and phloretin, two inhibitors of the mammalian facilitative glucose transporters, can overcome the reduced drug accumulation conferred by expression of the rat GLUT1 protein in Xenopus oocytes but have no significant effect on the accumulation of drug by Xenopus oocytes expressing the mouse Mdr1b P-glycoprotein. These drugs also increase the accumulation of [3H]vinblastine in multidrug-resistant Chinese hamster ovary cells. Cytochalasin E, an analog of cytochalasin B that does not affect the activity of the facilitative glucose transporter, has no effect on the accumulation of vinblastine by multidrug-resistant Chinese hamster cells or by oocytes expressing either the mouse Mdr1b P-glycoprotein or the GLUT1 protein. In all three cases, the drug verapamil produces a profound effect on the cellular accumulation of vinblastine. Interestingly, although immunological analysis indicated the presence of massive amounts of P-glycoprotein in the multidrug-resistant cells, immunological and functional studies revealed only a minor increase in the expression of a hexose transporter-like protein in resistant versus drug-sensitive cells. Taken together, these results suggest the participation of the mammalian facilitative glucose transporter in the development of drug resistance.

???displayArticle.pubmedLink??? 1675425
???displayArticle.pmcLink??? PMC361066
???displayArticle.link??? Mol Cell Biol
???displayArticle.grants??? [+]

Species referenced: Xenopus laevis
Genes referenced: slc2a1

References [+] :
Ames, Bacterial periplasmic transport systems: structure, mechanism, and evolution. 1986, Pubmed