Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-24288
J Biol Chem 1991 Dec 05;26634:23365-72.
Show Gene links Show Anatomy links

Mapping and molecular modeling of a recognition domain for lysosomal enzyme targeting.

Baranski TJ , Koelsch G , Hartsuck JA , Kornfeld S .


???displayArticle.abstract???
Lysosomal enzymes contain a common protein determinant that is recognized by UDP-GlcNAc:lysosomal enzyme N-acetylglucosamine-1-phosphotransferase, the initial enzyme in the biosynthesis of mannose-6-P residues. Previously, we generated a lysosomal enzyme recognition domain by substituting two regions (lysine 203 and amino acids 265-292) of the lysosomal hydrolase cathepsin D into a related secretory protein glycopepsinogen. When expressed in Xenopus oocytes, the oligosaccharides of the chimeric protein were efficiently phosphorylated (Baranski, T. J., Faust, P. L., and Kornfeld, S. (1990) Cell 63, 281-291). In the current study, incremental substitutions of cathepsin D residues into glycopepsinogen and alanine-scanning mutagenesis were utilized to define the recognition domain more precisely. A computer-generated model of the cathepsin D/pepsinogen chimeric molecule served as a guide for mutagenesis and for the interpretation of results. These studies indicate that the recognition domain is a surface patch that contains multiple interacting sites. There is a strict positional requirement for the lysine residue at position 203.

???displayArticle.pubmedLink??? 1660471
???displayArticle.link??? J Biol Chem
???displayArticle.grants??? [+]