Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-22195
J Biol Chem 1993 Sep 25;26827:19915-8.
Show Gene links Show Anatomy links

Receptor-evoked Cl- current in Xenopus oocytes is mediated through a beta-type phospholipase C. Cloning of a new form of the enzyme.

Ma HW , Blitzer RD , Healy EC , Premont RT , Landau EM , Iyengar R .


???displayArticle.abstract???
Xenopus oocytes exhibit a receptor-evoked Cl- current that is mediated through the activation of phospholipase C (PLC) and release of intracellular Ca2+. The identity of PLC(s) mediating this effect is unknown. We have cloned cDNAs encoding a new form of PLC-beta from a Xenopus oocyte cDNA library. The Xenopus PLC-beta has substantial (33-64%) homology with mammalian beta 1, beta 2, beta 3, and beta 4 phospholipase C and is closest to PLC-beta 3, with 64% identity and 80% similarity. Injection of antisense oligonucleotides to a specific region of Xenopus PLC-beta results in degradation of its mRNA and significantly reduces Cl- currents evoked by both endogenous angiotensin receptors and expressed mammalian alpha 1b-adrenergic receptors and M1-muscarinic receptors as compared to responses in sense oligonucleotide-injected oocytes. Inhibition of the M1-muscarinic response by antisense oligonucleotides was nonadditive with pertussis toxin inhibition. PLC antisense oligonucleotide-injected oocytes show Cl- current responses to IP3 that are indistinguishable from sense oligonucleotide-injected oocytes. Since the receptor responses are pertussis toxin-sensitive, we conclude that we have isolated a new form of PLC-beta involved in the pertussis toxin-sensitive receptor stimulation of the Ca2+ activated Cl- current in Xenopus oocytes.

???displayArticle.pubmedLink??? 8397190
???displayArticle.link??? J Biol Chem
???displayArticle.grants??? [+]

Species referenced: Xenopus
Genes referenced: plcb3