Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-20918
J Neurosci Res 1994 Aug 15;386:613-20. doi: 10.1002/jnr.490380603.
Show Gene links Show Anatomy links

Resolving three types of chloride channels in demyelinated Xenopus axons.

Wu JV , Shrager P .


???displayArticle.abstract???
Axons from Xenopus sciatic nerve were demyelinated by intraneural injection of lysolecithin rendering the entire internodal axolema accessible to a patch electrode. In this region, three types of anion selective pores were found and characterized at the single-channel level. These included outwardly rectifying, inwardly rectifying, and maxi Cl- channels. The outwardly rectifying Cl- channels (24 pS) are activated by depolarization with a weak voltage dependence of 42 mV per e-fold change in open probability. The inwardly rectifying Cl- channels (27 pS) are insensitive to voltage, but can be blocked by internal application of 100 microM SITS or DIDS. The I-V curves of rectifying channels are S-shaped and can be fitted by a kinetic model with a single free energy barrier. The rectification may be related to the location of this barrier. The maxi Cl- channel (335 pS) is often open at the resting potential, but is inactivated by a large depolarization. The rectification, voltage dependence, and inactivation of these channels may contribute to the regulation of axonal Cl- balance and resting potential.

???displayArticle.pubmedLink??? 7807579
???displayArticle.link??? J Neurosci Res
???displayArticle.grants??? [+]