Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-20145
Hum Mol Genet 1995 Feb 01;42:269-73.
Show Gene links Show Anatomy links

Missense mutation (G480C) in the CFTR gene associated with protein mislocalization but normal chloride channel activity.

Smit LS , Strong TV , Wilkinson DJ , Macek M , Mansoura MK , Wood DL , Cole JL , Cutting GR , Cohn JA , Dawson DC .


???displayArticle.abstract???
We have identified a novel CFTR missense mutation associated with a protein trafficking defect in mammalian cells but normal chloride channel properties in a Xenopus oocyte assay. The mutation, a cysteine for glycine substitution at residue 480 (G480C), was detected in a pancreatic insufficient, African-American, cystic fibrosis (CF) patient. G480C was found on one additional CF chromosome and on none of 220 normal chromosomes, including 160 chromosomes from normal African-American individuals. Western blot analysis and immunofluorescence studies revealed that, in 293T cells, the encoded mutant protein was not fully glycosylated and failed to reach the plasma membrane, suggesting that the G480C protein was subject to defective intracellular processing. However, in Xenopus oocytes, a system in which mutant CFTR proteins are less likely to experience an intracellular processing/trafficking deficit, expression of G480C CFTR was associated with a chloride conductance that exhibited a sensitivity to activation by forskolin and 3-isobutyl-1-methylxanthine (IBMX) that was similar to that of wild-type CFTR. This appears to be the first identification of a CFTR mutant with a single amino acid substitution in which the sole basis for disease is mislocalization of the protein.

???displayArticle.pubmedLink??? 7757078
???displayArticle.link??? Hum Mol Genet


Species referenced: Xenopus laevis
Genes referenced: cftr