Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-19390
Insect Mol Biol 1995 Aug 01;43:193-202. doi: 10.1111/j.1365-2583.1995.tb00025.x.
Show Gene links Show Anatomy links

U1 snRNA variants coexist in Bombyx mori cells.

Gao JP , Herrera RJ .


???displayArticle.abstract???
Evidence for at least four U1 snRNA variants were obtained from a U1 cDNA library using U1 snRNA from Bombyx mori BmN cells in culture. Sequence analysis of thirty cDNA clones showed that: (1) the nucleotide changes are in the hairpin structures I, II and III; (2) the majority of the base changes in stem structures between a posterior silk gland (PSG) U1 RNA and the BmN U1 clones, as well as among the BmN U1 clones, are compensatory; (3) although the base differences between PSG U1 and BmN U1 clones, and among the BmN U1 clones, are not the same, they are located in similar positions in moderately conserved sites, frequently at the bases of loops; (4) when comparing the PSG U1 with the BmN U1 clones, twelve out of nineteen stem differences generate stronger pairing resulting in a more stable hairpin II in the BmN U1 clones; and (5) the Sm and 70K proteins binding site sequences are highly conserved among these U1 clones. Although a comparison of sequences changes associated with U1 isoforms from different species indicate that there are no common base changes with the B. mori U1 clones reported here, similarities in the multitude and location of base differences in hairpins I, II and III are observed in mouse and/or Xenopus. It is possible that U1 variants like the ones reported here play a role in alternative pre-mRNA splicing by way of different RNA-protein factor interactions.

???displayArticle.pubmedLink??? 8589846
???displayArticle.link??? Insect Mol Biol
???displayArticle.grants??? [+]