Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-18980
Circ Res 1995 Dec 01;776:1151-5. doi: 10.1161/01.res.77.6.1151.
Show Gene links Show Anatomy links

Cloned human inward rectifier K+ channel as a target for class III methanesulfonanilides.

Kiehn J , Wible B , Ficker E , Taglialatela M , Brown AM .


???displayArticle.abstract???
Methanesulfonanilide derivatives such as dofetilide are members of the widely used Class III group of cardiac antiarrhythmic drugs. A methanesulfonanilide-sensitive cardiac current has been identified as IKr, the rapidly activating component of the repolarizing outward cardiac K+ current, IK. IKr may be encoded by the human ether-related gene (hERG), which belongs to the family of voltage-dependent K+ (Kv) channels having six putative transmembrane segments. The hERG also expresses an inwardly rectifying, methanesulfonanilide-sensitive K+ current. Here we show that hIRK, a member of the two-transmembrane-segment family of inward K+ rectifiers that we have cloned from human heart, is a target for dofetilide. hIRK currents, expressed heterologously in Xenopus oocytes, are blocked by dofetilide at submicromolar concentrations (IC50 = 533 nmol/L at 40 mV and 20 degrees C). The drug has no significant blocking effect on the human cardiac Kv channels hKv1.2, hKv1.4, hKv1.5, or hKv2.1. The block is voltage dependent, use dependent, and shortens open times in a manner consistent with open-channel block. While steady state block is strongest at depolarized potentials, recovery from block is very slow even at hyperpolarized potentials (tau = 1.17 seconds at -80 mV). Thus, block of hIRK may persist during diastole and might thereby affect cardiac excitability.

???displayArticle.pubmedLink??? 7586228
???displayArticle.link??? Circ Res
???displayArticle.grants??? [+]

Species referenced: Xenopus
Genes referenced: kcnh2