Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-18821
Neuropharmacology 1996 Jan 01;351:29-36. doi: 10.1016/0028-3908(95)00177-8.
Show Gene links Show Anatomy links

Effect of protein kinase-C activation on the Mg(2+)-sensitivity of cloned NMDA receptors.

Wagner DA , Leonard JP .


???displayArticle.abstract???
The mechanisms responsible for protein kinase-c (PKC) mediated potentiation of NMDA receptors are poorly understood. One hypothesis is that PKC-activation reduces the receptor's characteristic voltage-dependent Mg(2+)-blockade. Experiments performed on Xenopus oocytes expressing cloned NMDA receptors demonstrated that PKC-activation induced no change in the sensitivity of zeta 1/epsilon 3 and zeta 1/epsilon 4 receptors to Mg(2+)-blockade and, even though PKC-activation did induce a small shift in Mg2+ sensitivity for the zeta 1/epsilon 1 and zeta 1/epsilon 2 receptors, the change seen was not large enough to account for an appreciable increase in NMDA receptor activity. Baseline Mg(2+)-sensitivities and levels of PKC-mediated potentiation were also quantified for each of the di-heteromeric NMDA receptors. The order of Mg(2+)-sensitivity is zeta 1/epsilon 1 (most sensitive) > zeta 1/epsilon 2 > zeta 1/epsilon 4 > zeta 1/epsilon 3 (least sensitive). PKC-activation caused a 2-fold increase in zeta 1/epsilon 1 currents, a 4-fold increase in zeta 1/epsilon 2 currents and no change in either zeta 1/epsilon 3 or zeta 1/epsilon 4 currents. These data suggest that PKC-potentiation of the cloned di-heteromeric NMDA receptors does not involve a reduction in Mg(2+)-blockade. The di-heteromeric receptors possess varied properties in regard to PKC-potentiation and Mg(2+)-blockade which have been quantified here.

???displayArticle.pubmedLink??? 8684594
???displayArticle.link??? Neuropharmacology
???displayArticle.grants??? [+]