Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-18378
J Neurobiol 1996 Apr 01;294:490-502. doi: 10.1002/(SICI)1097-4695(199604)29:4<490::AID-NEU6>3.0.CO;2-3.
Show Gene links Show Anatomy links

Axons of Xenopus neural tube respond to reversals of neural tube orientation.

Nordlander RH , Liu S .


???displayArticle.abstract???
Axonal trajectories of the Kolmer-Agduhr (KA) neurons of Xenopus embryos, were observed after anterior-posterior (A-P) inversions of neural tube grafts to determine whether KA axons follow cell-inherent directional cues, cues from their immediate environment, or rostrocaudal signals from the embryo. KA axons form one of the earliest ascending spinal pathways in Xenopus and are visible in the lateral marginal zone of whole mounts processed for GABA immunoreactivity. Grafts were made at trunk levels at stages 22-24, 3-5 h before the first KA neurons were detectable and prior to axonal out-growth. Embryos were fixed and immunostained 6-36 h later. KA trajectories within and adjacent to reversed grafts were compared to those of nonrotated control grafts and to neural tube lengths comparable in position and in length in unoperated embryos. Most KA axons within rotated grafts followed the graft's orientation. However, others changed direction, taking novel routes, including turning to conform to the orientation of the host embryo. Reorientations were most common near the posterior host/graft interface. Some host KA cells also reoriented, always within a few hundred microns of the graft interface. Taken together, these growth patterns show that most KA axons within the grafts grow normally with respect to the original polarity of the graft neural tube and maintain that direction even into tissue of opposite polarity, suggesting that their routes are mainly determined by cell-intrinsic and/or local tissue factors. However, the reorientation of many other axons, particularly near graft seams, implies that KA axons can respond to local fluctuations in directional or segment identity signals generated in both host and graft after this perturbation.

???displayArticle.pubmedLink??? 8656213
???displayArticle.link??? J Neurobiol
???displayArticle.grants??? [+]