Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-18336
Genes Cells 1996 Apr 01;14:355-67. doi: 10.1046/j.1365-2443.1996.d01-245.x.
Show Gene links Show Anatomy links

A novel nuclease activity from Xenopus laevis releases short oligomers from 5'-ends of double- and single-stranded DNA.

Reichenberger S , Brüll N , Feldmann E , Göttlich B , Vielmetter W , Pfeiffer P .


???displayArticle.abstract???
BACKGROUND: Double-strand breaks in chromosomal DNA of eucaryotic cells are assumed to be repaired by mechanisms of illegitimate recombination capable of direct rejoining of the broken ends. Cell-free extracts of Xenopus laevis eggs efficiently perform these end joining reactions with any pair of noncomplementary DNA termini whose single-stranded 5'- or 3'-overhangs do not exceed a length of approximately 10 nt. RESULTS: Using hairpin-shaped oligonucleotides that allow the construction of double-strand break termini with 5'- or 3'-overhangs of defined length and sequence we show that 5'-overhangs of more than 9-10 nt are exonucleolytically resected in the extract to produce shorter 5'-overhangs that can be metabolized in the end joining reaction. 5'-recessed ends in double-stranded DNA with 3'-overhangs of more than 2nt as well as the 5'-ends of single-stranded DNA also serve as substrates for the exonuclease activity. In all cases, oligomers of about 10 nt are released from the 5'-ends. CONCLUSIONS: We describe here a novel 5'-exonuclease activity present in eggs from Xenopus laevis that reproducibly removes decameric oligonucleotides from 5'-ends of double- and single-stranded DNA. A possible function of this unusual activity is discussed in the context of homologous and illegitimate genetic recombination processes.

???displayArticle.pubmedLink??? 9135080
???displayArticle.link??? Genes Cells