Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-17749
Br J Pharmacol 1996 Sep 01;1192:360-4.
Show Gene links Show Anatomy links

The effect of PPADS as an antagonist of inositol (1,4,5)trisphosphate induced intracellular calcium mobilization.

Vigne P , Pacaud P , Urbach V , Feolde E , Breittmayer JP , Frelin C .


???displayArticle.abstract???
1. Brain capillary endothelial cells responded to uridine 5'-triphosphate (UTP) and adenosine 5'-triphosphate (ATP) by activation of phospholipase C and by large changes in [Ca2+]i. These cells expressed mRNA sequences identical to the sequence of the P2Y2-purinoceptor of rat pituitaries. 2. Pyridoxalphosphate-6-azophenyl-2',4'-disulphonic acid (PPADS) at 100 microM did not prevent UTP and ATP induced accumulations of total [3H]-inositol (poly)phosphates. It inhibited UTP and ATP induced intracellular Ca2+ mobilization (IC50 = 30 microM) by non competitive mechanism. 3. PPADS (100 microM) inhibited endothelin-1 induced accumulation of total [3H]-inositol (poly)phosphates by less than 20% and prevented most of endothelin-1 induced intracellular Ca2+ mobilization (IC50 = 30 microM). 4. PPADS (100 microM) had no action on ionomycin induced intracellular Ca2+ mobilization. 5. Microinjection of inositol (1,4,5)trisphosphate (InsP3) into Xenopus oocytes induced large Ca2+ activated Cl- currents that were prevented by heparin and by PPADS. 6. It is concluded that PPADS does not recognize rat P2Y2-purinoceptors and prevents UTP and ATP induced intracellular Ca2+ mobilization by a non-specific mechanism that could involve the inhibition of InsP3 channels.

???displayArticle.pubmedLink??? 8886421
???displayArticle.pmcLink??? PMC1915870



Species referenced: Xenopus

References [+] :
Abbracchio, Purinoceptors: are there families of P2X and P2Y purinoceptors? 1994, Pubmed