Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-17530
J Membr Biol 1996 Nov 01;1541:23-33. doi: 10.1007/s002329900129.
Show Gene links Show Anatomy links

Heterogeneity of volume-sensitive chloride channels in basolateral membranes of A6 epithelial cells in culture.

Banderali U , Ehrenfeld J .


???displayArticle.abstract???
A new technique allowing single-channel patch-clamp recordings from basolateral membranes of A6 renal epithelial cells in culture was developed. Using this technique we studied the chloride channels activated in these basolateral membranes during hypo-osmotic stress. Four different types of channel were identified and classified according to their current/voltage (I/V) relationships as observed in the on-cell configuration of the patch-clamp technique. Three of these channels had linear I/V relationships with unitary conductances of 12, 30 and 42 pS. The fourth type had an outwardly rectifying I/V curve with inward and outward conductances of 16 and 57 pS respectively. The kinetic properties of each class of channel were studied and kinetic models developed for two of them: the 42 pS channel and the outward rectifier. These models permitted the study of the evolution of the kinetic parameters during hypo-osmotic shock and revealed two different kinetic schemes of channel activation. The results of experiments made on the basolateral membranes were also compared with those of a set of analogous patch-clamp experiments carried out on isolated A6 cells. In these latter, the frequency of successful observations of active channels in a patch was 13%, whereas it was 31% for basolateral membranes. Also, of the four types of channel observed in basolateral membranes, two were never found in isolated cells, only the 12 pS channel and the outward rectifier were present in these isolated cells.

???displayArticle.pubmedLink??? 8881024
???displayArticle.link??? J Membr Biol