Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-1744
Neuropharmacology 2005 Dec 01;497:963-76. doi: 10.1016/j.neuropharm.2005.05.001.
Show Gene links Show Anatomy links

Differential ion current activation by human 5-HT(1A) receptors in Xenopus oocytes: evidence for agonist-directed trafficking of receptor signalling.

Heusler P , Pauwels PJ , Wurch T , Newman-Tancredi A , Tytgat J , Colpaert FC , Cussac D .


???displayArticle.abstract???
The subject of the present study was the functional and pharmacological characterization of human 5-HT(1A) receptor regulation of ion channels in Xenopus oocytes. Activation of the heterologously expressed human 5-HT(1A) receptor induced two distinct currents in Xenopus oocytes, consisting of a smooth inward current (I(smooth)) and an oscillatory calcium-activated chloride current, I(Cl(Ca)). 5-HT(1A) receptor coupling to both ionic responses as well as to co-expressed inward rectifier potassium (GIRK) channels was pharmacologically characterized using 5-HT(1A) receptor agonists. The relative order of efficacy for activation of GIRK current was 5-HT approximately F 13714 approximately L 694,247 approximately LY 228,729>flesinoxan approximately (+/-)8-OH-DPAT. In contrast, flesinoxan and (+/-)8-OH-DPAT typically failed to activate I(Cl(Ca)). The other ligands behaved as full or partial agonists, exhibiting an efficacy rank order of 5-HT approximately L 694,247>F 13714 approximately LY 228,729. The pharmacological profile of I(smooth) activation was completely distinct: flesinoxan and F 13714 were inactive and rather exhibited an inhibition of this current. I(smooth) was activated by the other agonists with an efficacy order of L 694,247>5-HT approximately LY 228,729>(+/-)8-OH-DPAT. Moreover, activation of I(smooth) was not affected by application of pertussis toxin or the non-hydrolyzable GDP-analogue, guanosine-5'-O-(2-thio)-diphosphate (GDP betaS), suggesting a GTP binding protein-independent pathway. Together, these results suggest the existence of distinct and agonist-specific signalling states of this receptor.

???displayArticle.pubmedLink??? 15964603
???displayArticle.link??? Neuropharmacology


Species referenced: Xenopus laevis
Genes referenced: kcnj3