Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-17381
J Neurobiol 1996 Dec 01;314:433-48. doi: 10.1002/(SICI)1097-4695(199612)31:4<433::AID-NEU4>3.0.CO;2-A.
Show Gene links Show Anatomy links

Regeneration of specific innervation in Xenopus pectoralis muscle.

Harada Y , Grinnell AD .


???displayArticle.abstract???
We investigated the motor unit organization and precision of reinnervation in the Xenopus pectoralis muscle following different manipulations, including crush or section of the posterior pectoralis nerve, foreign nerve innervation, and crush coupled with activity modulation or block. Most fibers have two neuromuscular junctions, and multielectrode recordings were used to identify the axonal origin of all inputs to both junctions on most or all fibers covering about 25% of the muscle surface. Following simple nerve crush, a highly organized innervation pattern was restored, indistinguishable from the normal pattern, including selective innervation of fibers of similar input resistance (R(in)), compact motor unit organization, and high incidence of exclusive innervation of both end plates on each fiber by the same axon (distributed mononeuronal innervation, or a/a pattern). Initial reinnervation was equally precise when nerve conduction in the regenerating nerve was blocked by tetrodotoxin. More distant or repeated nerve crush or nerve section delayed and reduced the precision of reinnervation, but the majority of fibers still received input to both end plates by the same axon, often in combination with others. A foreign nerve, the pectoralis sternalis, which in its own muscle forms only single end plates, showed less precise reinnervation, but still had an incidence of a/a innervation far above chance. These data imply the expression and recognition of remarkably precise chemospecific cues even in mature animals, superimposed on which is a further refinement by synapse elimination, probably based on an activity-dependent process.

???displayArticle.pubmedLink??? 8951102
???displayArticle.link??? J Neurobiol