Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-17259
J Biol Chem 1996 Dec 20;27151:33083-94.
Show Gene links Show Anatomy links

The primary structure and carbohydrate specificity of a beta-galactosyl-binding lectin from toad (Bufo arenarum Hensel) ovary reveal closer similarities to the mammalian galectin-1 than to the galectin from the clawed frog Xenopus laevis.

Ahmed H , Pohl J , Fink NE , Strobel F , Vasta GR .


???displayArticle.abstract???
The detailed characterization of a galectin from the toad (Bufo arenarum Hensel) ovary in its primary structure, carbohydrate specificity, and overall biochemical properties has provided novel information pertaining to structural and evolutionary aspects of the galectin family. The lectin consists of identical single-chain polypeptide subunits composed of 134 amino acids (calculated mass, 14,797 daltons), and its N-terminal residue, alanine, is N-acetylated. When compared to the sequences of known galectins, the B. arenarum galectin exhibited the highest identity (48% for the whole molecule and 77% for the carbohydrate recognition domain (CRD)) with the bovine spleen galectin-1, but surprisingly less identity (38% for the whole molecule and 47% for the CRD) with a galectin from Xenopus laevis skin (Marschal, P., Herrmann, J., Leffler, H., Barondes, S. H., and Cooper, D. N. W. (1992) J. Biol. Chem. 267, 12942-12949). Unlike the X. laevis galectin, the binding activity of the B. arenarum galectin for N-acetyllactosamine, the human blood group A tetrasaccharide and Galbeta1,3GalNAc relative to lactose, was in agreement with that observed for the galectin-1 subgroup and those galectins having "conserved" (type I) CRDs (Ahmed, H., and Vasta, G. R. (1994) Glycobiology 4, 545-549). Moreover, the toad galectin shares three of the six cysteine residues that are conserved in all mammalian galectins-1, but not in the galectins from X. laevis, fish, and invertebrates described so far. Based on the homologies of the B. arenarum galectin with the bovine spleen galectin-1 and X. laevis skin galectin, it should be concluded that within the galectin family the correlation between conservation of primary structure and phylogenetic distances among the source species may not be a direct one as proposed elsewhere (Hirabayashi, J., and Kasai, K. (1993) Glycobiology 3, 297-304). Furthermore, galectins with conserved (type I) CRDs, represented by the B. arenarum ovary galectin, and those with "variable" (type II) CRDs, represented by the X. laevis 16-kDa galectin, clearly constitute distinct subgroups in the extant amphibian taxa and may have diverged early in the evolution of chordate lineages.

???displayArticle.pubmedLink??? 8955156
???displayArticle.link??? J Biol Chem