Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-16954
Bioorg Med Chem 1997 Feb 01;52:335-52. doi: 10.1016/s0968-0896(96)00252-0.
Show Gene links Show Anatomy links

Conformational analysis of glutamic acid analogues as probes of glutamate receptors using molecular modelling and NMR methods. Comparison with specific agonists.

Todeschi N , Gharbi-Benarous J , Acher F , Larue V , Pin JP , Bockaert J , Azerad R , Girault JP .


???displayArticle.abstract???
The activity of five glutamic acid analogues substituted in position 3 or 4 by a methyl (3T, 3E, 4T, and 4E) or a methylene group (4M) has been examined at one cloned Glu receptor subtype, mGluR1. These analogues interact with glutamate receptors of the central nervous system, especially the ligand 4T [(2S,4S)-4-methylglutamic acid] at the metabotropic glutamate receptor mGluR1. It was observed that only the 4T isomer is as potent an agonist as glutamic acid, whereas other isomers are less active. Furthermore, 4E [(2S,4R)-4-methylglutamic acid] exhibited an exceptional selectivity for the KA ionotropic receptor subtype while 4M [(2S)-4-methyleneglutamic acid] was active at the NMDA receptors. These molecules represent suitable tools among a population of similar glutamate analogues for a classical structure-function relationship study. We have undertaken a conformational analysis by 1H and 13C NMR spectroscopy and molecular modelling of these molecules. Hetero- and homonuclear coupling constants were measured in order to assign the diastereotopic methylene protons at C(3) or C(4), and used for comparison in molecular dynamics (MD) simulations. The hydrogen-bonding possibility, steric effects or electrostatic interactions may be a considerable influence in stabilizing a conformational population in D2O solution. The conformations may be grouped by the two backbone torsion angles, chi 1 [alpha-CO2(-)-C(2)-C(3)-C(4)] and chi 2 [+NC(2)-C(3)-C(4)-gamma CO2-] and by the two characteristic distances between the potentially active functional groups, alpha N(+)-gamma CO2- (d1) and alpha CO2(-)-gamma CO2- (d2). The conformational preferences in solution of 4T, 4E and (3T, 3E, 4M) are discussed in the light of the physical features known for a specific metabotropic agonist (ACPD) and specific ionotropic agonists (KA) and (NMDA), respectively.

???displayArticle.pubmedLink??? 9061198
???displayArticle.link??? Bioorg Med Chem


Species referenced: Xenopus
Genes referenced: grm1