Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-16870
Neurosci Lett 1997 Feb 21;2232:133-6. doi: 10.1016/s0304-3940(97)13422-x.
Show Gene links Show Anatomy links

Antagonist properties of eliprodil and other NMDA receptor antagonists at rat NR1A/NR2A and NR1A/NR2B receptors expressed in Xenopus oocytes.

Avenet P , Léonardon J , Besnard F , Graham D , Depoortere H , Scatton B .


???displayArticle.abstract???
We have studied the effects of a variety of N-methyl-D-aspartate (NMDA) antagonists acting at different sites of the NMDA receptor complex on NMDA-induced currents in Xenopus oocytes expressing heteromeric NR1A/NR2 and NR1A/NR2B receptors. The polyamine site antagonists eliprodil (IC50 = 3.0 microM) and ifenprodil (IC50 = 0.27 microM) antagonized NMDA responses at NR1A/NR2B receptors but not at NR1A/NR2A receptors (IC50 > 100 microM). The channel blockers dizocilpine, memantine and phencyclidine (PCP) were equally potent antagonists at both receptor subtypes whereas dextromethorphan was four times more potent at NR1A/NR2A receptors. The glycine site antagonists L-689,560 and 7-Cl-kynurenate were 10 times more potent at NR1A/NR2A than at NR1A/NR2B receptor subtypes. The selectivity of eliprodil and ifenprodil for the NR1A/NR2B receptor subtype may, at least partially, explain their favorable side effects profile.

???displayArticle.pubmedLink??? 9089691
???displayArticle.link??? Neurosci Lett


Species referenced: Xenopus
Genes referenced: grin2a grin2b