Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-16823
Am J Physiol 1997 Mar 01;2723 Pt 2:H1275-86. doi: 10.1152/ajpheart.1997.272.3.H1275.
Show Gene links Show Anatomy links

Modulation of K channels by coexpressed human alpha1C-adrenoceptor in Xenopus oocytes.

Tseng GN , Yao JA , Tseng-Crank J .


???displayArticle.abstract???
alpha1-Adrenoceptors participate in the regulation of inotropy and chronotropy in the heart. Modulation of cardiac K-channel function plays an important role in these alpha1-adrenergic functions. Studies of the mechanisms of K-channel modulation by alpha1-adrenoceptors are hampered by the coexistence of multiple receptor and channel subtypes in the heart. We therefore used a model system of coexpressing a specific receptor (human alpha1c-adrenoceptor) and a K-channel clone (hIsK, rKv1.2, or rKv1.4) in oocytes. alpha1c-Adrenoceptor stimulation caused a rapid upregulation of hIsK by elevating the intracellular Ca concentration. At least part of this effect was due to an activation of calmodulin and Ca/calmodulin-dependent protein kinase II. On the other hand, alpha1c-adrenoceptor stimulation caused a slow downregulation of rKv1.2 and rKvl.4 by activating protein kinase C. The differential modulation of K channels by alpha1c-adrenoceptors demonstrated in our experiments corroborates the complexity of alpha1-adrenergic functions in the heart. Our results indicate that the oocyte model system can be a useful approach in studying alpha1-adrenergic modulation of ion-channel function and signal transduction.

???displayArticle.pubmedLink??? 9087602
???displayArticle.link??? Am J Physiol
???displayArticle.grants??? [+]