Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-16481
Virology 1997 May 26;2321:230-9. doi: 10.1006/viro.1997.8561.
Show Gene links Show Anatomy links

Synthesis and processing of the equine herpesvirus 1 glycoprotein M.

Osterrieder N , Neubauer A , Fakler B , Brandmüller C , Seyboldt C , Kaaden OR , Baines JD .


???displayArticle.abstract???
In a previous report, the function of the equine herpesvirus 1 (EHV-1) glycoprotein M (gM) homolog was investigated. It was shown that EHV-1 gM is involved in both virus entry and direct cell-to-cell spread of infection (N. Osterrieder et al., J. Virol. 70, 4110-4115, 1996). In this study, experiments were conducted to analyze the synthesis, posttranslational processing, and the putative ion channel function of EHV-1 gM. It was demonstrated that EHV-1 gM is synthesized as an Mr 44,000 polypeptide, which is cotranslationally N-glycosylated to an Mr 46,000-48,000 glycoprotein. The Mr 46,000-48,000 gM moiety is processed to an Mr 50,000-55,000 glycoprotein, which is resistant to treatment with endoglycosidase H, indicating that processing occurs in the Golgi network. EHV-1 gM forms a dimer in infected cells and the virion, as was demonstrated by the presence of an Mr 105,000-110,000 gM-containing band in electrophoretically separated lysates of infected cells and purified extracellular virions. The Mr 105,000-110,000 protein band containing gM was also observed in lysates of cells that had been transfected with EHV-1 gM DNA. The translation of EHV-1 gM is initiated at the first in-frame methionine of the gM open reading frame as shown by transient transfection experiments of full-length gM and a truncated gM lacking the aminoterminal 83 amino acids. Functional expression of EHV-1 gM in Xenopus laevis oocytes together with voltage-clamp analyses demonstrated that gM per se does not exhibit ion channel activity as had been speculated from the predicted structure of the polypeptide.

???displayArticle.pubmedLink??? 9185606
???displayArticle.link??? Virology


Species referenced: Xenopus laevis
Genes referenced: tbx2