Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-16434
J Pharmacol Exp Ther 1997 Jun 01;2813:1136-43.
Show Gene links Show Anatomy links

Inhibition of 5-hydroxytryptamine type 2A receptor-induced currents by n-alcohols and anesthetics.

Minami K , Minami M , Harris RA .


???displayArticle.abstract???
5-Hydroxytryptamine type 2A receptors (5-HT2A) are G protein-coupled receptors that increase intracellular Ca2+ concentrations via activation of phospholipase C-beta and elevation of myo-inositol-1,4,5-triphosphate levels. In the central nervous system, these receptors are involved in regulating sleep and alertness. We now report that ethanol inhibited (IC50 = 41 mM) 5-HT2A receptor-induced Ca2+-dependent Cl- currents in Xenopus laevis oocytes. Pharmacologically relevant concentrations of other n-alcohols (propanol to octanol) also inhibited 5-HT responses; however, longer-chain alcohols (decanol, undecanol and dodecanol) had little or no effect. The protein kinase C inhibitor GF109203X and the nonspecific protein kinase inhibitor staurosporine abolished the inhibitory effects of ethanol and octanol on 5-HT2A receptors. GF109203X enhanced 5-HT2A receptor function when administered alone. In addition, the volatile anesthetics halothane and 1-chloro-1,2,2-trifluorocyclobutane decreased 5-HT2A responses in a concentration-dependent manner. The inhibitory effects of the volatile anesthetics were also attenuated in oocytes treated with GF109203X. The intravenous anesthetics propofol, ketamine, pentobarbital and etomidate did not affect 5-HT2A receptor function. The modulation of 5-HT2A receptor-dependent current was also investigated using two novel halogenated compounds that do not produce anesthesia. The nonanesthetic compound 2,3-chloro-octafluorobutane had no effects on 5-HT-induced currents; however, the nonanesthetic compound 1,2-dichlorohexafluorocyclobutane had an inhibitory effect at lower concentrations than the predicted anesthetic concentration. Thus, 5-HT2A receptors are inhibited by alcohols and volatile anesthetics, and these actions are dependent on protein kinase C.

???displayArticle.pubmedLink??? 9190846
???displayArticle.link??? J Pharmacol Exp Ther
???displayArticle.grants??? [+]