Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-15862
J Gen Physiol 1997 Nov 01;1105:551-64.
Show Gene links Show Anatomy links

Mechanism of ion permeation in skeletal muscle chloride channels.

Fahlke C , Dürr C , George AL .


???displayArticle.abstract???
Voltage-gated Cl- channels belonging to the ClC family exhibit unique properties of ion permeation and gating. We functionally probed the conduction pathway of a recombinant human skeletal muscle Cl- channel (hClC-1) expressed both in Xenopus oocytes and in a mammalian cell line by investigating block by extracellular or intracellular I- and related anions. Extracellular and intracellular I- exert blocking actions on hClC-1 currents that are both concentration and voltage dependent. Similar actions were observed for a variety of other halide (Br-) and polyatomic (SCN-, NO3-, CH3SO3-) anions. In addition, I- block is accompanied by gating alterations that differ depending on which side of the membrane the blocker is applied. External I- causes a shift in the voltage-dependent probability that channels exist in three definable kinetic states (fast deactivating, slow deactivating, nondeactivating), while internal I- slows deactivation. These different effects on gating properties can be used to distinguish two functional ion binding sites within the hClC-1 pore. We determined KD values for I- block in three distinct kinetic states and found that binding of I- to hClC-1 is modulated by the gating state of the channel. Furthermore, estimates of electrical distance for I- binding suggest that conformational changes affecting the two ion binding sites occur during gating transitions. These results have implications for understanding mechanisms of ion selectivity in hClC-1, and for defining the intimate relationship between gating and permeation in ClC channels.

???displayArticle.pubmedLink??? 9348327
???displayArticle.pmcLink??? PMC2229385



Species referenced: Xenopus laevis
Genes referenced: nbl1 sri uqcc6


???attribute.lit??? ???displayArticles.show???
References [+] :
Beck, Molecular basis for decreased muscle chloride conductance in the myotonic goat. 1996, Pubmed, Xenbase