Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-15801
Vis Neurosci 1997 Jan 01;145:811-26.
Show Gene links Show Anatomy links

Large retinal ganglion cells in the pipid frog Xenopus laevis form independent, regular mosaics resembling those of teleost fishes.

Shamim KM , Tóth P , Cook JE .


???displayArticle.abstract???
Population-based studies of retinal neurons have helped to reveal their natural types in mammals and teleost fishes. In this, the first such study in a frog, labeled ganglion cells of the mesobatrachian Xenopus laevis were examined in flatmounts. Cells with large somata and thick dendrites could be divided into three mosaic-forming types, each with its own characteristic stratification pattern. These are named alpha a, alpha ab, and alpha c, following a scheme recently used for teleosts. Cells of the alpha a mosaic (approximately 0.4% of all ganglion cells) had very large somata and trees, arborizing diffusely within sublamina a (the most sclerad). Their distal dendrites were sparsely branched but achieved consistent coverage by intersecting those of their neighbors. Displaced and orthotopic cells belonged to the same mosaic, as did cells with symmetric and asymmetric trees. Cells of the alpha ab mosaic (approximately 1.2%) had large somata, somewhat smaller trees that appeared bistratified at low magnification, and dendrites that branched extensively. Their distal dendrites arborized throughout sublamina b and the vitread part of a, tessellating with their neighbors. All were orthotopic; most were symmetric. Cells of the alpha c mosaic (approximately 0.5%) had large somata and very large, sparse, flat, overlapping trees, predominantly in sublamina c. All were orthotopic; some were asymmetric. Nearest-neighbor analyses and spatial correlograms confirmed that each mosaic was regular and independent, and that spacings were reduced in juvenile frogs. Densities, proportions, sizes, and mosaic statistics are tabulated for all three types, which are compared with types defined previously by size and symmetry in Xenopus and potentially homologous mosaic-forming types in teleosts. Our results reveal strong organizational similarities between the large ganglion cells of teleosts and frogs. They also demonstrate the value of introducing mosaic analysis at an early stage to help identify characters that are useful markers for natural types and that distinguish between within-type and between-type variation in neuronal populations.

???displayArticle.pubmedLink??? 9364720