Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-15799
DNA Cell Biol 1997 Oct 01;1610:1207-16.
Show Gene links Show Anatomy links

Enhancement of the transcription potential of nascent chromatin by chromosomal proteins HMG-14/-17 is coupled to nucleosome assembly and not DNA synthesis.

Weigmann N , Trieschmann L , Bustin M .


???displayArticle.abstract???
We have previously demonstrated that in Xenopus egg extracts, which support DNA strand synthesis and chromatin assembly, incorporation of chromosomal proteins HMG-14/-17 into nascent nucleosomes increases the transcriptional potential of a chromatin template carrying the Xenopus 5S RNA gene. Here we use the single-stranded and double-stranded forms of a plasmid carrying a 5S RNA maxigene, to test whether the effect of HMG-14/-17 on transcription requires DNA synthesis and whether these proteins will affect transcription through a region containing nucleosomes. We find that most of the transcripts were about 350 nucleotides long, suggesting that HMG-14/-17 enhance transcription through a region that could contain nucleosomes. HMG-14/-17 enhance transcription of chromatin templates assembled onto double-stranded DNA, in the absence of DNA synthesis. Single-round transcription assays suggest that HMG-14/-17 increase transcription from templates assembled onto both single- and double-stranded DNA by increasing the specific activity, and not the number, of transcriptionally active templates. We conclude that the effect of HMG-14/-17 on the transcriptional potential of chromatin is linked to nucleosome assembly and is not linked to DNA synthesis.

???displayArticle.pubmedLink??? 9364931