Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-15110
Biochim Biophys Acta 1998 Mar 06;13701:98-106.
Show Gene links Show Anatomy links

The substrate recognition domain in the Na+/dicarboxylate and Na+/sulfate cotransporters is located in the carboxy-terminal portion of the protein.

Pajor AM , Sun N , Bai L , Markovich D , Sule P .


???displayArticle.abstract???
The Na+/dicarboxylate cotransporter, NaDC-1, and the Na+/sulfate cotransporter, NaSi-1, share 43% sequence identity, but they exhibit no overlap in substrate specificity. A functional chimera, SiDC-4, was prepared from NaDC-1 and NaSi-1 by homologous recombination and expressed in Xenopus oocytes. SiDC-4 contains putative transmembrane domains 1-4 of NaSi-1 (amino acids 1-139) and putative transmembrane domains 5-11 of NaDC-1 (amino acids 141-593). SiDC-4 retains the substrate specificity of NaDC-1, which suggests that the substrate recognition domain is found in the carboxy-terminal portion of the protein, past amino acid 141. However, residues that affect substrate affinity and inhibition by furosemide and flufenamate are found in the amino terminal third of the protein. The cation binding properties of SiDC-4, including a stimulation of transport by lithium, differed from both parental transporters, suggesting that cation binding is determined by interactions between the amino- and carboxy-terminal portions of the protein. We conclude that the substrate recognition site of NaDC-1 and NaSi-1 is found in the carboxy-terminal portion of the protein, past amino acid 141, but residues in the amino terminus can affect substrate affinity, inhibitor sensitivity, and cation selectivity.

???displayArticle.pubmedLink??? 9518567
???displayArticle.link??? Biochim Biophys Acta
???displayArticle.grants??? [+]