Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-15099
Exp Physiol 1998 Mar 01;832:211-20. doi: 10.1113/expphysiol.1998.sp004105.
Show Gene links Show Anatomy links

System y+L: the broad scope and cation modulated amino acid transporter.

Devés R , Angelo S , Rojas AM .


???displayArticle.abstract???
The properties are discussed of system y+L, a broad scope amino acid transporter which was first identified in human erythrocytes. System y+L exhibits two distinctive properties: (a) it can bind and translocate cationic and neutral amino acids, and (b) its specificity varies depending on the ionic composition of the medium. In Na+ medium, the half-saturation constant for L-lysine influx was 9.5 +/- 0.67 microM and the inhibition constant (Ki) for L-leucine was 10.7 +/- 0.72 microM. L-Leucine is the neutral amino acid that binds more powerfully, whereas smaller analogues, such as L-alanine and L-serine interact less strongly (the corresponding inhibition constants were Ki,Ala, 0.62 +/- 0.11 mM; Ki,Ser, 0.49 +/- 0.08 mM). In the presence of K+, the carrier functions as a cationic amino acid specific carrier, but Li+ is able to substitute for Na+ facilitating neutral amino acid binding. The effect of the inorganic cations is restricted to the recognition of neutral amino acids; translocation occurs at similar rates in the presence of Na+, K+ and Li+. The only structural feature that appears to impair translocation is bulkiness and substrates with half-saturation constants differing by more than 100-fold translocate at the same rate. This suggests that translocation is largely independent of the forces of interaction between the substrate and the carrier site. System y+L activity has been observed in Xenopus laevis oocytes injected with the cRNA for the heavy chain of the 4F2 human surface antigen. 4F2hc is an integral membrane protein with a single putative membrane-spanning domain and it remains to be clarified whether it is part of the transporter or an activator protein.

???displayArticle.pubmedLink??? 9568481
???displayArticle.link??? Exp Physiol


Species referenced: Xenopus laevis
Genes referenced: slc3a2