Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-14688
J Neurochem 1998 Jul 01;711:402-9. doi: 10.1046/j.1471-4159.1998.71010402.x.
Show Gene links Show Anatomy links

Manipulation of disulfide bonds differentially affects the intracellular transport, sorting, and processing of neuroendocrine secretory proteins.

Van Horssen AM , Van Kuppeveld FJ , Martens GJ .


???displayArticle.abstract???
To investigate if the prevention of disulfide bond formation affects the intracellular transport, sorting, and processing of a distinct set of neuroendocrine proteins in the regulated secretory pathway, we have treated Xenopus intermediate pituitaries with the thiol-reducing agent dithiothreitol. Pulse-chase incubations in combination with immunoprecipitation analysis were used to monitor the fates of the prohormone proopiomelanocortin (POMC), prohormone convertase PC2 and its helper protein 7B2, as well as secretogranin III. Manipulation of the disulfide bonds in POMC and proPC2 blocked their transport to the trans-Golgi network and strongly inhibited their processing. Reduction of the single disulfide bond in 7B2 did not disturb its transport and cleavage, but caused its missorting to the constitutive secretory pathway. Moreover, the liaison between proPC2 and 7B2 was prevented. Dithiothreitol did not affect transport, sorting, and cleavage of secretogranin III, which lacks disulfide bonds. When the reducing agent was washed away, POMC processing, proPC2 maturation, and the association between proPC2 and 7B2 were reestablished. Collectively, our findings indicate that manipulation of disulfide bonds differentially affects the fates of neuroendocrine proteins during their transit through the secretory pathway.

???displayArticle.pubmedLink??? 9648890
???displayArticle.link??? J Neurochem


Species referenced: Xenopus laevis
Genes referenced: pkd2 pomc