Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-13836
Neuropharmacology 1998 Jan 01;3710-11:1205-10. doi: 10.1016/s0028-3908(98)00108-7.
Show Gene links Show Anatomy links

Pharmacology and toxicology of ATOA, an AMPA receptor antagonist and a partial agonist at GluR5 receptors.

Wahl P , Frandsen A , Madsen U , Schousboe A , Krogsgaard-Larsen P .


???displayArticle.abstract???
(RS)-2-Amino-3-[3-(carboxymethoxy)-5-tert-butyl-4-isoxazolyl]propi onic acid (ATOA) has previously been described as an antagonist at (RS)-2-amino-3-(3-hydroxy-5-methyl-4-isoxazolyl)propionic acid (AMPA) receptors with an IC50 value of 150 microM towards AMPA-induced depolarisation in the rat cortical wedge preparation. ATOA has now been shown also to be a partial agonist at recombinant GluR5 receptors, expressed in Xenopus oocytes, with an EC50 value of 170 microM and a relative efficacy of 0.17 +/- 0.04 compared with responses produced by kainic acid (1.0). Using cultured cerebral cortical neurones as a test system and leakage of lactate dehydrogenase (LDH) as an indicator of cell damage, ATOA was shown to be cytotoxic (ED50 > 300 microM), though much less toxic than the structurally related dual AMPA and GluR5 agonist, (RS)-2-amino-3-(3-hydroxy-5-tert-butyl-4-isoxazolyl)propionic acid (ATPA) (ED50 = 14 +/- 2 microM). The toxic effect of ATPA was sensitive to 6,7-dinitroquinoxaline-2,3-dione (DNQX) but was not significantly reduced by the selective AMPA receptor antagonist, (RS)-2-amino-3-[3-(carboxymethoxy)-5-methyl-4-isoxazolyl]propionic acid (AMOA). The toxicity of ATOA (1 mM) could not be significantly attenuated by co-administration of AMOA (300 microM) or DNQX (25 microM). A structure-activity analysis indicates that the tert-butyl group of ATPA and ATOA facilitates the interaction of these compounds with GluR5 receptors.

???displayArticle.pubmedLink??? 9849658
???displayArticle.link??? Neuropharmacology


Species referenced: Xenopus laevis
Genes referenced: grik1 tert