Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-13545
Am J Physiol 1999 Feb 01;2762:F323-8. doi: 10.1152/ajprenal.1999.276.2.F323.
Show Gene links Show Anatomy links

A nucleoside-sensitive organic cation transporter in opossum kidney cells.

Chen R , Pan BF , Sakurai M , Nelson JA .


???displayArticle.abstract???
Renal secretion of organic cations and anions are pleiotropic, active processes in mammals. Some nucleosides such as deoxyadenosine (dAdo), 2-chlorodeoxyadenosine, and azidothymidine are secreted by human and rodent kidneys. Previous work (J. A. Nelson, J. F. Kuttesch, Jr., and B. H. Herbert. Biochemical Pharmacology 32: 2323-2327, 1983) indicated a role for the classic organic cation transporter (OCT) in the secretion of the dAdo analog, 2'-deoxytubercidin, by mouse kidney. Using [14C]tetraethylammonium bromide ([14C]TEA) as a substrate, we tested several renal cell lines for a nucleoside-sensitive OCT. American opossum kidney proximal tubule cells (OK) express a cimetidine-sensitive and metabolic-dependent ability to efflux TEA. Other classic OCT inhibitors and several nucleosides also inhibit TEA efflux by these cells in a manner reflecting structural specificity for the carrier. Inhibition of OCT by nucleosides is not a universal feature of OCTs, since TEA transport mediated by cloned rat kidney OCT2 in the Xenopus laevis oocyte system was not inhibited by the same nucleosides. In conclusion, OK cells appear to possess an OCT that may also transport some nucleosides by a novel carrier.

???displayArticle.pubmedLink??? 9950964
???displayArticle.link??? Am J Physiol
???displayArticle.grants??? [+]

Species referenced: Xenopus laevis
Genes referenced: pou2f2