Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-13174
J Biol Chem 1999 Apr 23;27417:11874-80.
Show Gene links Show Anatomy links

Control of the cell morphology and the S phase entry by mitogen-activated protein kinase kinase. A regulatory role of its n-terminal region.

Gotoh I , Fukuda M , Adachi M , Nishida E .


???displayArticle.abstract???
The mitogen-activated protein kinase kinase (MAPKK)/MAP kinase (MAPK) cascade plays an important role in the growth control of mammalian cells. We have found that expression of constitutively active MAPKK induces rapid morphological changes of fibroblastic cells, which are accompanied by disruption of stress fibers and disappearance of focal adhesions. These changes took place under the conditions that inhibited cellular Ras function, suggesting a linkage between the MAPK cascade and the control of cell morphology. We further show that constitutively active MAPKK can induce expression of endogenous Fos protein, an immediately early gene product, and cause the S phase entry of G0-arrested cells. Finally, expression of the N-terminal fragment of MAPKK which encompasses the nuclear export signal sequence and the MAPK-binding site blocked both the serum-induced S phase entry of quiescent cells and the oncogenic Ras-induced morphological changes. All these results demonstrate that MAPKK is one of key molecules involved in the control of both cell morphology and cell proliferation and suggest an important role for the N-terminal region of MAPKK in the regulation of the MAPK signaling.

???displayArticle.pubmedLink??? 10207007
???displayArticle.link??? J Biol Chem


Species referenced: Xenopus
Genes referenced: fos mapk1