Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-12879
Am J Physiol 1999 Jun 01;2766:C1398-404. doi: 10.1152/ajpcell.1999.276.6.C1398.
Show Gene links Show Anatomy links

Metabolic acidosis regulates rat renal Na-Si cotransport activity.

Puttaparthi K , Markovich D , Halaihel N , Wilson P , Zajicek HK , Wang H , Biber J , Murer H , Rogers T , Levi M .


???displayArticle.abstract???
Recently, we cloned a cDNA (NaSi-1) localized to rat renal proximal tubules and encoding the brush-border membrane (BBM) Na gradient-dependent inorganic sulfate (Si) transport protein (Na-Si cotransporter). The purpose of the present study was to determine the effect of metabolic acidosis (MA) on Na-Si cotransport activity and NaSi-1 protein and mRNA expression. In rats with MA for 24 h (but not 6 or 12 h), there was a significant increase in the fractional excretion of Si, which was associated with a 2.4-fold decrease in BBM Na-Si cotransport activity. The decrease in Na-Si cotransport correlated with a 2.8-fold decrease in BBM NaSi-1 protein abundance and a 2.2-fold decrease in cortical NaSi-1 mRNA abundance. The inhibitory effect of MA on BBM Na-Si cotransport was also sustained in rats with chronic (10 days) MA. In addition, in Xenopus laevis oocytes injected with mRNA from kidney cortex, there was a significant reduction in the induced Na-Si cotransport in rats with MA compared with control rats, suggesting that MA causes a decrease in the abundance of functional mRNA encoding the NaSi-1 cotransporter. These findings indicate that MA reduces Si reabsorption by causing decreases in BBM Na-Si cotransport activity and that decreases in the expression of NaSi-1 protein and mRNA abundance, at least in part, play an important role in the inhibition of Na-Si cotransport activity during MA.

???displayArticle.pubmedLink??? 10362603
???displayArticle.link??? Am J Physiol
???displayArticle.grants??? [+]