Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-12082
Proc Natl Acad Sci U S A 1999 Oct 26;9622:12772-7. doi: 10.1073/pnas.96.22.12772.
Show Gene links Show Anatomy links

Molecular cloning and functional analysis of SUT-1, a sulfate transporter from human high endothelial venules.

Girard JP , Baekkevold ES , Feliu J , Brandtzaeg P , Amalric F .


???displayArticle.abstract???
High endothelial venules (HEV) are specialized postcapillary venules found in lymphoid organs and chronically inflamed tissues that support high levels of lymphocyte extravasation from the blood. One of the major characteristics of HEV endothelial cells (HEVEC) is their capacity to incorporate large amounts of sulfate into sialomucin-type counter-receptors for the lymphocyte homing receptor L-selectin. Here, we show that HEVEC express two functional classes of sulfate transporters defined by their differential sensitivity to the anion-exchanger inhibitor 4,4'-diisothiocyanostilbene-2, 2'-disulfonic acid (DIDS), and we report the molecular characterization of a DIDS-resistant sulfate transporter from human HEVEC, designated SUT-1. SUT-1 belongs to the family of Na(+)-coupled anion transporters and exhibits 40-50% amino acid identity with the rat renal Na(+)/sulfate cotransporter, NaSi-1, as well as with the human and rat Na(+)/dicarboxylate cotransporters, NaDC-1/SDCT1 and NaDC-3/SDCT2. Functional expression studies in cRNA-injected Xenopus laevis oocytes showed that SUT-1 mediates high levels of Na(+)-dependent sulfate transport, which is resistant to DIDS inhibition. The SUT-1 gene mapped to human chromosome 7q33. Northern blotting analysis revealed that SUT-1 exhibits a highly restricted tissue distribution, with abundant expression in placenta. Reverse transcription-PCR analysis indicated that SUT-1 and the diastrophic dysplasia sulfate transporter (DTD), one of the two known human DIDS-sensitive sulfate transporters, are coexpressed in HEVEC. SUT-1 and DTD could correspond, respectively, to the DIDS-resistant and DIDS-sensitive components of sulfate uptake in HEVEC. Together, these results demonstrate that SUT-1 is a distinct human Na(+)-coupled sulfate transporter, likely to play a major role in sulfate incorporation in HEV.

???displayArticle.pubmedLink??? 10535998
???displayArticle.pmcLink??? PMC23093
???displayArticle.link??? Proc Natl Acad Sci U S A


Species referenced: Xenopus laevis
Genes referenced: slc13a4l

References [+] :
Altschul, Basic local alignment search tool. 1990, Pubmed