Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-11084
J Biol Chem 2000 Jul 07;27527:20295-301. doi: 10.1074/jbc.M001555200.
Show Gene links Show Anatomy links

Ca2+-free calmodulin and calmodulin damaged by in vitro aging are selectively degraded by 26 S proteasomes without ubiquitination.

Tarcsa E , Szymanska G , Lecker S , O'Connor CM , Goldberg AL .


???displayArticle.abstract???
The ubiquitin-proteasome pathway is believed to selectively degrade post-synthetically damaged proteins in eukaryotic cells. To study this process we used calmodulin (CaM) as a substrate because of its importance in cell regulation and because it acquires isoaspartyl residues in its Ca(2+)-binding regions both in vivo and after in vitro "aging" (incubation for 2 weeks without Ca(2+)). When microinjected into Xenopus oocytes, in vitro aged CaM was degraded much faster than native CaM by a proteasome-dependent process. Similarly, in HeLa cell extracts aged CaM was degraded at a higher rate, even though it was not conjugated to ubiquitin more rapidly than the native species. Ca(2+) stimulated the ubiquitination of both species, but inhibited their degradation. Thus, for CaM, ubiquitination and proteolysis appear to be dissociated. Accordingly, purified muscle 26 S proteasomes could degrade aged CaM and native Ca(2+)-free (apo) CaM without ubiquitination. Addition of Ca(2+) dramatically reduced degradation of the native molecules but only slightly reduced the breakdown of the aged species. Thus, upon Ca(2+) binding, native CaM assumes a non-degradable conformation, which most of the age-damaged species cannot assume. Thus, flexible conformations, as may arise from age-induced damage or the absence of ligands, can promote degradation directly by the proteasome without ubiquitination.

???displayArticle.pubmedLink??? 10791958
???displayArticle.link??? J Biol Chem
???displayArticle.grants??? [+]