Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-10870
Alzheimer Dis Assoc Disord 2000 Jan 01;14 Suppl 1:S95-102. doi: 10.1097/00002093-200000001-00014.
Show Gene links Show Anatomy links

Cellular mechanism of action of cognitive enhancers: effects of nefiracetam on neuronal Ca2+ channels.

Yoshii M , Watabe S , Murashima YL , Nukada T , Shiotani T .


???displayArticle.abstract???
Cellular mechanisms underlying the cognition-enhancing actions of piracetam-like nootropics were studied by recording Ca2+ channel currents from neuroblastoma x glioma hybrid (NG108-15) cells and Xenopus oocytes expressing Ca2+ channels. In NG108-15 cells, nefiracetam (1 microM) produced a twofold increase in L-type Ca2+ channel currents. A similar, but slightly less potent effect was observed with aniracetam, whereas piracetam and oxiracetam exerted no such effects. Cyclic AMP analogs mimicked the nefiracetam action. N-type Ca2+ channel currents inhibited by leucine (Leu)-enkephalin by means of inhibitory G proteins (Go/Gi) were recovered promptly by nefiracetam, whereas those inhibited by prostaglandin E1 via stimulatory G proteins were not affected by nefiracetam. Cells treated with pertussis toxin (500 ng/mL, > 20 hours) were insensitive to nefiracetam. In Xenopus oocytes functionally expressing N-type (alpha1B) Ca2+ channels and delta-opioid receptors, nefiracetam was also effective in facilitating the recovery from Leu-enkephalin-induced inhibition. These results suggest that nefiracetam, and possibly aniracetam, may activate N- and L-type Ca2+ channels in a differential way depending on how they recover from Go/Gi-mediated inhibition.

???displayArticle.pubmedLink??? 10850736
???displayArticle.link??? Alzheimer Dis Assoc Disord