Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-10276
Am J Physiol Cell Physiol 2000 Oct 01;2794:C1135-43. doi: 10.1152/ajpcell.2000.279.4.C1135.
Show Gene links Show Anatomy links

Cloning and characterization of a type III Na-dependent phosphate cotransporter from mouse intestine.

Bai L , Collins JF , Ghishan FK .


???displayArticle.abstract???
Intestinal and renal absorption of inorganic phosphate (P(i)) is critical for phosphate homeostasis in mammals. We have isolated a cDNA that encodes a type III Na-dependent phosphate cotransporter from mouse small intestine (mPit-2). The nucleotide sequence of mPit-2 predicts a protein of 653 amino acids with at least 10 putative transmembrane domains. Kinetic studies, carried out in Xenopus oocytes, showed that mPit-2 cRNA induces significant Na-dependent P(i) uptake with an apparent Michaelis constant (K(m)) for phosphate of 38 microM. The transport of phosphate by mPit-2 is inhibited at high pH. Northern blot analysis demonstrated the presence of mPit-2 mRNA in various tissues, including intestine, kidney, heart, liver, brain, testis, and skin. The highest expression of mPit-2 in the intestine was found in the jejunum. In situ hybridization revealed that mPit-2 mRNA is expressed throughout the vertical crypt-villus axis of the intestinal epithelium. The presence of mPit-2 in the mouse intestine and its unique transport characteristics suggest that multiple Na-dependent cotransporters may contribute to phosphate absorption in the mammalian small intestine.

???displayArticle.pubmedLink??? 11003594
???displayArticle.link??? Am J Physiol Cell Physiol
???displayArticle.grants??? [+]