Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-10226
Gen Comp Endocrinol 2000 Sep 01;1193:329-39. doi: 10.1006/gcen.2000.7528.
Show Gene links Show Anatomy links

Effect of diethylstilbestrol on thyroid hormone binding to amphibian transthyretins.

Yamauchi K , Prapunpoj P , Richardson SJ .


???displayArticle.abstract???
Transthyretin (TTR) is responsible for a major part of the binding of thyroid hormone to proteins in the plasma in amphibian tadpoles. To characterize the binding properties of amphibian TTRs, the effects of 17 hydrophobic signaling molecules, including 6 endocrine disruptors, on 3,5,3'-l-[(125)I]triiodothyronine ([(125)I]T(3)) binding to plasma proteins were examined in bullfrog Rana catesbeiana tadpoles. T(3) was the most potent competitive inhibitor among the 11 natural biological ligands studied, with an ID(50) of 8 nM. Diethylstilbestrol (DES) was the most powerful inhibitor among the 6 endocrine disruptors studied, with an ID(50) of 20 nM. Similar inhibitions of [(125)I]T(3) binding by these compounds were obtained when purified recombinant Xenopus and Rana TTRs were analyzed. Scatchard analysis revealed that Xenopus and Rana TTRs each possessed a single class of binding site for T(3), with a K(d) of 262 and 1.9 nM, respectively, at 0 degrees C. DES, at a concentration of 200 nM, induced the uptake of [(125)I]T(3) into Rana red blood cells suspended in Rana plasma from prometamorphic stages XIII-XV, when TTR is present in plasma. DES induced the uptake of [(125)I]T(3) into red blood cells to a lesser extent when they were suspended in Rana plasma from metamorphic climax stage XXIV, in which the level of TTR was lower than in plasma from the prometamorphic tadpoles. These results indicate that amphibian TTRs have the ability to bind DES with similar affinity to T(3), the natural ligand, and raise the possibility that DES binding to TTR might induce the temporary elevation of the free concentration of plasma T(3) followed by acceleration of cellular T(3) uptake.

???displayArticle.pubmedLink??? 11017780
???displayArticle.link??? Gen Comp Endocrinol


Species referenced: Xenopus
Genes referenced: des.1 des.2 ttr