Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-1251
Dev Dyn 2005 Nov 01;2343:791-801. doi: 10.1002/dvdy.20610.
Show Gene links Show Anatomy links

Inner ear formation during the early larval development of Xenopus laevis.

Quick QA , Serrano EE .


???displayArticle.abstract???
The formation of the eight independent endorgan compartments (sacculus, utricle, horizontal canal, anterior canal, posterior canal, lagena, amphibian papilla, and basilar papilla) of the Xenopus laevis inner ear is illustrated as the otic vesicle develops into a complex labyrinthine structure. The morphology of transverse sections and whole-mounts of the inner ear was assessed in seven developmental stages (28, 31, 37, 42, 45, 47, 50) using brightfield and laser scanning confocal microscopy. The presence of mechanosensory hair cells in the sensory epithelia was determined by identification of stereociliary bundles in cryosectioned tissue and whole-mounts of the inner ear labeled with the fluorescent F-actin probe Alexa-488 phalloidin. Between stages 28 and 45, the otic vesicle grows in size, stereociliary bundles appear and increase in number, and the pars inferior and pars superior become visible. The initial formation of vestibular compartments with their nascent stereociliary bundles is seen by larval stage 47, and all eight vestibular and auditory compartments with their characteristic sensory fields are present by larval stage 50. Thus, in Xenopus, inner ear compartments are established between stages 45 and 50, a 2-week period during which the ear quadruples in length in the anteroposterior dimension. The anatomical images presented here demonstrate the morphological changes that occur as the otic vesicle forms the auditory and vestibular endorgans of the inner ear. These images provide a resource for investigations of gene expression patterns in Xenopus during inner ear compartmentalization and morphogenesis.

???displayArticle.pubmedLink??? 16217737
???displayArticle.pmcLink??? PMC2829094
???displayArticle.link??? Dev Dyn
???displayArticle.grants??? [+]

Species referenced: Xenopus laevis
Genes referenced: actb actl6a


???attribute.lit??? ???displayArticles.show???
References [+] :
Amaya, A method for generating transgenic frog embryos. 1999, Pubmed, Xenbase