Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-12718
J Biol Chem 1999 Jul 16;27429:20643-9.
Show Gene links Show Anatomy links

Adenophostin A induces spatially restricted calcium signaling in Xenopus laevis oocytes.

Bird GS , Takahashi M , Tanzawa K , Putney JW .


???displayArticle.abstract???
The activation of intracellular calcium release and calcium entry across the plasmalemma in response to intracellular application of inositol 2,4,5-trisphosphate and adenophostin A, two metabolically stable agonists for inositol 1,4,5-trisphosphate receptors, was investigated using Xenopus laevis oocytes and confocal imaging. Intracellular injection of inositol 2,4,5-trisphosphate induced a rapidly spreading calcium signal associated with regenerative calcium waves; the calcium signal filled the peripheral regions of the cell in 1-5 min. Injection of high concentrations of adenophostin A (250 nM) similarly induced rapidly spreading calcium signals. Injection of low concentrations of adenophostin A resulted in calcium signals that spread slowly (>1 h). With extremely low concentrations of adenophostin A (approximately 10 pM), stable regions of Ca2+ release were observed that did not expand to peripheral regions. When the adenophostin A-induced calcium signal was restricted to central regions, compartmentalized calcium oscillations were sometimes observed. Restoration of extracellular calcium caused a rise in cytoplasmic calcium restricted to the region of adenophostin A-induced calcium mobilization. The limited diffusion of adenophostin A provides an opportunity to examine calcium signaling processes under spatially restricted conditions and provides insights into mechanisms of intracellular calcium oscillations and capacitative calcium entry.

???displayArticle.pubmedLink??? 10400696
???displayArticle.link??? J Biol Chem